Published in

Elsevier, Reproductive BioMedicine Online, 6(13), p. 833-839

DOI: 10.1016/s1472-6483(10)61032-2

Links

Tools

Export citation

Search in Google Scholar

Embryo implantation: the molecular mechanism remains elusive.

Journal article published in 2006 by Jd D. Aplin ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Low rates of implantation are an impediment to more efficient assisted reproduction techniques. Improved endometrial receptivity and embryo preparation should lead to higher pregnancy rates, lower rates of early pregnancy failure and fewer multiple pregnancies. As the first site of contact between embryo and endometrium, the luminal epithelium (LE) is responsible for the non-receptive status of proliferative and early secretory tissue, and transformation to receptivity in the mid-secretory phase presumably requires alterations in expression, organization or activation of adhesion systems. Luminal cells are less abundant than their glandular counterparts, and are under-represented in global tissue datasets. Furthermore, alterations in cell surface composition can be readily accomplished by mechanisms that do not rely on altered transcription or translation. Current data from in-vitro models are consistent with initial attachment to mucin in the apical glycocalyx, perhaps via a carbohydrate-mediated interaction, after which the epithelial phenotype is modified by a medium- or short-range embryonic signal. A cascade of interactions follows, mediating embryo migration across the epithelium. Strikingly, numerous potential mediators of adhesion at implantation are located in the lateral rather than the apical surface of LE cells. Attached embryos appear to gain rapid access to this highly adhesive lateral membrane domain.