Published in

Elsevier, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1(265), p. 193-197

DOI: 10.1016/j.nimb.2007.08.047

Links

Tools

Export citation

Search in Google Scholar

Elemental and topographic characterization of LDPE based copolymeric films obtained by gamma irradiation

Journal article published in 2007 by L. M. Ferreira ORCID, A. N. Falcão, M. H. Gil
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The preparation of PE-g-HEMA (polyethylene-grafted-hydroxyethyl methacrylate) films by 60Co gamma irradiation has been optimized to produce a new material suitable for bioapplications.This paper reports the elemental and topographic analysis of PE-g-HEMA films with different grafting degrees, obtained under optimized experimental conditions, with the purpose to appraise their possible toxicological risk and their surface roughness properties.In this way a Nuclear Microprobe using PIXE (Proton Induced X-ray Emission) technique was used to assess the elemental analysis of the film samples prepared. Trace contaminations of elements heavier than Si (Ca, Cl, Fe, K, P, S, Si and Zn) were found, but their concentrations do not pose toxicological risk.Atomic Force Microscopy (AFM) and Scanning Electronic Microscopy (SEM) techniques were used to assess the morphological characterization of the films, revealing the roughness and 3D porous structure of their surface, which are ones of essential characteristics for bio-interaction or cell adhesion.