Published in

Elsevier, Molecular and Cellular Proteomics, 11(9), p. 2337-2353, 2010

DOI: 10.1074/mcp.m110.000737

Links

Tools

Export citation

Search in Google Scholar

Glycoprotein Capture and Quantitative Phosphoproteomics Indicate Coordinated Regulation of Cell Migration upon Lysophosphatidic Acid Stimulation*

Journal article published in 2010 by Nina Mäusbacher, Thiemo B. Schreiber, Henrik Daub
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The lipid mediator lysophosphatidic acid (LPA) is a serum component that regulates cellular functions such as proliferation, migration, and survival via specific G protein-coupled receptors. The underlying signaling mechanisms are still incompletely understood, including those that operate at the plasma membrane to modulate cell-cell and cell-matrix interactions in LPA-promoted cell migration. To explore LPA-evoked phosphoregulation with a focus on cell surface proteins, we combined glycoproteome enrichment by immobilized lectins with SILAC-based quantitative phosphoproteomics. We performed biological replicate analyses in SCC-9 squamous cell carcinoma cells and repeatedly quantified the effect of 1.5- and 5-min LPA treatment on more than 700 distinct phosphorylations in lectin-purified proteins. We detected many regulated phosphorylation events on various types of plasma membrane proteins such as cell adhesion molecules constituting adherens junctions, desmosomes, and hemidesmosomes. Several of these LPA-regulated phosphorylation sites have been characterized in a biological context other than G protein-coupled receptor signaling, and the transfer of this functional information suggests coordinated and multifactorial cell adhesion control in LPA-induced cell migration. Additionally, we identified LPA-mediated activation loop phosphorylation of the serine/threonine kinase Wnk1 and verified a role of Wnk1 for LPA-induced cell migration in knock-down experiments. In conclusion, the glycoproteome phosphoproteomics strategy described here sheds light on incompletely understood mechanisms in LPA-induced cell migratory behavior.