Published in

Elsevier, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 9(59), p. 2087-2098

DOI: 10.1016/s1386-1425(03)00018-0

Links

Tools

Export citation

Search in Google Scholar

Vibrational spectra and ab initio analysis of tert-butyl, trimethylsilyl, and trimethylgermyl derivatives of 3,3-dimethylcyclopropene II. 3,3-dimethyl-1,2-bis(trimethylsilyl)cyclopropene

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The IR and Raman spectra of 3,3-dimethyl-1,2-bis(trimethylsilyl)cyclopropene (I) (synthesised using standard procedures) were measured in the liquid phase. Total geometry optimisation was performed at the HF/6-31G* level. The HF/6-31G*//HF/6-31G* quantum mechanical force field (QMFF) was calculated and used to determine the theoretical fundamental vibrational frequencies, their predicted IR intensities, Raman activities, and Raman depolarisation ratios. Using Pulay's scaling method and the theoretical molecular geometry, the QMFF of I was scaled by a set of scaling factors used previously for 3,3-dimethyl-1,2-bis(tert-butyl)cyclopropene (17 scale factors for a 105-dimensional problem). The scaled QMFF obtained was used to solve the vibrational problem. The quantum mechanical values of the Raman activities were converted to differential Raman cross sections. The figures for the experimental and theoretical Raman and IR spectra are presented. Assignments of the experimental vibrational spectra of I are given. They take into account the calculated potential energy distribution and the correlation between the estimations of the experimental IR and Raman intensities and Raman depolarisation ratios and the corresponding theoretical values (including Raman cross sections) calculated using the unscaled QMFF. © 2003 Elsevier Science B.V. All rights reserved. ; SCOPUS: ar.j ; info:eu-repo/semantics/published