Published in

Elsevier, Analytical Biochemistry, 1(435), p. 74-82, 2013

DOI: 10.1016/j.ab.2012.12.017

Links

Tools

Export citation

Search in Google Scholar

Determination of acidity and nucleophilicity in thiols by reaction with monobromobimane and fluorescence detection.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A method based on the differential reactivity of thiol and thiolate with monobromobimane (mBBr) has been developed to measure nucleophilicity and acidity of protein and low-molecular-weight thiols. Nucleophilicity of the thiolate is measured as the pH-independent second-order rate constant of its reaction with mBBr. The ionization constants of the thiols are obtained through the pH dependence of either second-order rate constant or initial rate of reaction. For readily available thiols, the apparent second-order rate constant is measured at different pHs and then plotted and fitted to an appropriate pH function describing the observed number of ionization equilibria. For less available thiols, such as protein thiols, the initial rate of reaction is determined in a wide range of pHs and fitted to the appropriate pH function. The method presented here shows excellent sensitivity, allowing the use of nanomolar concentrations of reagents. The method is suitable for scaling and high-throughput screening. Example determinations of nucleophilicity and pKa are presented for captopril and cysteine as low-molecular-weight thiols and for human peroxiredoxin 5 and Trypanosoma brucei monothiol glutaredoxin 1 as protein thiols.