Published in

American Society for Cell Biology, Molecular Biology of the Cell, 3(19), p. 912-928

DOI: 10.1091/mbc.e07-06-0596

Links

Tools

Export citation

Search in Google Scholar

Caveolin-1 and -2 Interact with Connexin43 and Regulate Gap Junctional Intercellular Communication in Keratinocytes

Journal article published in 2008 by Stéphanie Langlois, Kyle N. Cowan, Qing Shao, Bryce J. Cowan, Dale W. Laird ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Connexin43 (Cx43) has been reported to interact with caveolin (Cav)-1, but the role of this association and whether other members of the caveolin family bind Cx43 had yet to be established. In this study, we show that Cx43 coimmunoprecipitates and colocalizes with Cav-1 and Cav-2 in rat epidermal keratinocytes. The colocalization of Cx43 with Cav-1 was confirmed in keratinocytes from human epidermis in vivo. Our mutation and Far Western analyses revealed that the C-terminal tail of Cx43 is required for its association with Cavs and that the Cx43/Cav-1 interaction is direct. Our results indicate that newly synthesized Cx43 interacts with Cavs in the Golgi apparatus and that the Cx43/Cavs complex also exists at the plasma membrane in lipid rafts. Using overexpression and small interfering RNA approaches, we demonstrated that caveolins regulate gap junctional intercellular communication (GJIC) and that the presence of Cx43 in lipid raft domains may contribute to the mechanism modulating GJIC. Our results suggest that the Cx43/Cavs association occurs during exocytic transport, and they clearly indicate that caveolin regulates GJIC.