Published in

European Geosciences Union, Biogeosciences, 20(11), p. 5733-5747, 2014

DOI: 10.5194/bg-11-5733-2014

Links

Tools

Export citation

Search in Google Scholar

Seasonal and interannual variations in the nitrogen cycle in the Arabian Sea

Journal article published in 2014 by T. Rixen ORCID, A. Baum, B. Gaye, B. Nagel
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. The Arabian Sea plays an important role in the marine nitrogen cycle because of its pronounced mid-water oxygen minimum zone (OMZ) in which bio-available nitrate (NO3−) is reduced to dinitrogen gas (N2). As the nitrogen cycle can respond fast to climate-induced changes in productivity and circulation, the Arabian Sea sediments are an important palaeoclimatic archive. In order to understand seasonal and interannual variations in the nitrogen cycle, nutrient data were obtained from the literature published prior to 1993, evaluated, and compared with data measured during five expeditions carried out in the framework of the Joint Global Ocean Flux Study (JGOFS) in the Arabian Sea in 1995 and during a research cruise of RV Meteor in 2007. The data comparison showed that the area characterized by a pronounced secondary nitrite maximum (SNM) was by 63% larger in 1995 than a similarly determined estimate based on pre-JGOFS data. This area, referred to as the core of the denitrifying zone, showed strong seasonal and interannual variations driven by the monsoon. During the SW monsoon, the SNM retreated eastward due to the inflow of oxygen-enriched Indian Ocean Central Water (ICW). During the NE monsoon, the SNM expanded westward because of the reversal of the current regime. On an interannual timescale, a weaker SW monsoon decreased the inflow of ICW from the equatorial Indian Ocean and increased the accumulation of denitrification tracers by extending the residence time of water in the SNM. This is supported by palaeoclimatic studies showing an enhanced preservation of accumulative denitrification tracers in marine sediments in conjunction with a weakening of the SW monsoon during the late Holocene.