Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Toxicology and Applied Pharmacology, 2(179), p. 98-104, 2002

DOI: 10.1006/taap.2001.9343

Links

Tools

Export citation

Search in Google Scholar

Ultrafine airborne particles cause increases in protooncogene expression and proliferation in alveolar epithelial cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Exposure to ambient particulate matter (PM) is linked to increases in respiratory morbidity and exacerbation of cardiopulmonary diseases. However, the important components of PM and their mechanisms of action in lung disease are unclear. We demonstrate the development of dose-related proliferation and apoptosis after exposure of an alveolar epithelial cell line (C10) to PM or to ultrafine carbon black (ufCB), a component of PM. Ribonuclease protection assays demonstrated that increases in mRNA levels of the early response protooncogenes c-jun, junB, fra-1, and fra-2 accompanied cell proliferation at low concentrations of PM whereas apoptotic concentrations of PM caused transient increases in expression of fos and jun family members and dose responsive increases in mRNA levels of receptor-interacting protein, Fas-associated death domain, and caspase-8. Significant increases in steady-state mRNA levels of protooncogenes and apoptosis-associated genes, TNFR-associated death domain, and Fas were also observed after exposure of epithelial cells to ufCB, but not fine carbon black or glass beads, respectively, suggesting that the ultrafine particulate component of PM is critical to its biological activity.