Published in

Elsevier, Toxicology and Applied Pharmacology, 1(137), p. 67-74

DOI: 10.1006/taap.1996.0058

Links

Tools

Export citation

Search in Google Scholar

Comparative proliferative and histopathologic changes in rat lungs after inhalation of chrysotile or crocidolite asbestos

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Patterns of cell proliferation in lung and pleura and development of histopathologic lesions were studied in lungs from Fischer 344 rats after inhalation exposure to chrysotile or crocidolite asbestos at average airborne concentrations of approximately 8 mg/m3 air for 5 and 20 days and after 20 days of exposure followed by an additional 20 days in room air (20 + 20 days). To assess cell proliferation rats were injected with 5-bromo-2'-deoxyuridine (BrdU) at various time points after initiation of exposure to asbestos. Image analysis was used to quantitate the effects of chrysotile and crocidolite on BrdU labeling indices in the following lung compartments: (1) interstitium, (2) alveolar duct region, (3) bronchial epithelium, and (4) visceral mesothelium. With the exception of mesothelium, which exhibited significant increases in BrdU incorporation in rats exposed to crocidolite at 20 + 20 days, asbestos-induced elevations in BrdU uptake in other compartments were transient with labeling comparable to sham controls at later time points. Histopathology of rat lungs revealed fibrotic lesions of a greater extent and severity at 20 days in rats exposed to crocidolite, but fibrosis occurred in both asbestos-exposed groups after an additional 20 days in clean air (20 + 20). Quantification of fiber burden in rat lung after inhalation of comparable airborne concentrations of either fiber type demonstrated that inhalation of crocidolite asbestos led to a higher fiber retention when compared to chrysotile asbestos. Our results indicate that chrysotile and crocidolite asbestos induce different patterns of cell proliferation in lung and pleural cells. The protracted increases in BrdU labeling of mesothelial cells by crocidolite may reflect increased retention of fibers and/or inherent differences between types of asbestos.