Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, RSC Advances, 30(2), p. 11504

DOI: 10.1039/c2ra21841k

Links

Tools

Export citation

Search in Google Scholar

Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This work reports on the influence of the polarization of electroactive poly(vinylidene fluoride), PVDF, on the biological response of cells cultivated under static and dynamic conditions. Non-poled and “poled +” β-PVDF with and without a titanium layer were thus prepared. A thin titanium layer was deposited on PVDF films in order to obtain a more homogeneous surface charge. The MC3T3-E1 osteoblast cell culture exhibited different responses in the presence of PVDF films. The positively charged β-PVDF films promote higher osteoblast adhesion and proliferation, which is higher under dynamic conditions on poled samples, showing that the surface charge under mechanical stimulation improves the osteoblast growth. Therefore, electroactive membranes and scaffolds can provide the necessary electrical stimuli for the growth and proliferation of specific cells.