Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, Journal of Bioactive and Compatible Polymers, 5(27), p. 429-440, 2012

DOI: 10.1177/0883911512448753

Links

Tools

Export citation

Search in Google Scholar

Membranes of poly(D,L-lactic acid)/Bioglass® with asymmetric bioactivity for biomedical applications

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In guided tissue/bone regeneration, membranes are used as barriers to prevent the faster growing soft tissue cells from entering the defect space and to regenerate periodontal ligament, cementum, and bone. The two sides of the membranes are in contact with distinct biological environments in which one faces a region in which osteointegration should be ideally promoted. Biocompatible and biodegradable composite membranes were produced by combining poly(d,l-lactic acid) and Bioglass® particles featuring an asymmetric bioactivity and a good integration between the polymeric and inorganic fractions. The asymmetric distribution of the osteoconductive particles was produced during the processing of the membrane using a solvent casting methodology. Only the inorganic-rich face promoted the deposition of bone-like apatite after immersing the composite membrane in simulated body fluid for 2 days. The mechanical properties of the membranes were evaluated using dynamic mechanical analysis by analyzing the viscoelastic properties and the glass transition of the samples in both dry and wet states. A clear plasticization effect of water was detected, but the composite membranes were found to be stiffer, at 37ºC, compared with the pure polymer. SaOs-2 cells attached on both the surfaces and proliferated after 7 days in culture.