American Association for the Advancement of Science, Science, 5183(266), p. 254-256, 1994
DOI: 10.1126/science.266.5183.254
Full text: Download
The morphologies and dynamics of aggregates formed by surfactant molecules are known to influence strongly performance properties spanning biology, household cleaning, and soil cleanup. Molecular dynamics simulations were used to investigate the morphology and dynamics of a class of surfactants, the gemini or dimeric surfactants, that are of potential importance in several industrial applications. Simulation results show that these surfactants form structures and have dynamic properties that are drastically different from those of single-chain surfactants. At the same weight fraction, single-chain surfactants form spherical micelles whereas gemini surfactants, whose two head groups are coupled by a short hydrophobic spacer, form thread-like micelles. Simulations at different surfactant concentrations indicate the formation of various structures, suggesting an alternative explanation for the unexpected viscosity behavior of gemini surfactants.