Dissemin is shutting down on January 1st, 2025

Published in

Springer (part of Springer Nature), Colloid and Polymer Science, 5(285), p. 575-580

DOI: 10.1007/s00396-006-1590-8

Links

Tools

Export citation

Search in Google Scholar

Glass transition of semi-crystalline PLLA with different morphologies as studied by dynamic mechanical analysis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Poly(L-lactic acid) was crystallized from the glassy state at different temperatures to produce fully transformed semi-crystalline specimens exhibiting different lamellar morphologies. The materials were tested by dynamic mechanical analysis, where a Tg decrease was found with an increasing crystallization temperature. Considering a three-phase model, this tendency was related to the corresponding increase in the thickness of the rigid amorphous phase. It is suggested that this phase could, in some extent, accommodate through local translational/ rotational motions the cooperative motions taking place within the mobile amorphous phase. This could be due to the non-compact structure of the cooperatively rearranging regions, which can present a string-like or fractal structure in their edges. The width of the loss factor peak associated to the glass transition increases with increasing crystallization temperature, suggesting an increase in the broadness of the distribution of relaxation times. The drop in the storage modulus across Tg varies systematically with the crystallization temperature in the different materials and could be correlated with the crystalline content. Above Tg, the loss factor exhibits a plateau-like behaviour at significantly high values, which seems to be a rather general behaviour in semi-crystalline systems that could be related to the contribution of pure irreversible flow in the overall viscoelastic behaviour.