Dissemin is shutting down on January 1st, 2025

Published in

American Meteorological Society, Monthly Weather Review, 5(141), p. 1693-1707, 2013

DOI: 10.1175/mwr-d-12-00246.1

Links

Tools

Export citation

Search in Google Scholar

A Five-Year Radar-Based Climatology of Tropopause Folds and Deep Convection over Wales, United Kingdom.

Journal article published in 2013 by Bogdan Antonescu, Geraint Vaughan ORCID, David M. Schultz ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractA five-year (2006–10) radar-based climatology of tropopause folds and convective storms was constructed for Wales, United Kingdom, to determine how deep, moist convection is modulated by tropopause folds. Based on the continuous, high-resolution data from a very high frequency (VHF) wind-profiling radar located at Capel Dewi, Wales, 183 tropopause folds were identified. Tropopause folds were most frequent in January with a secondary maximum in July. Based on data from the U.K. weather radar network, a climatology of 685 convective storms was developed. The occurrence of convective storms was relatively high year-round except for an abrupt minimum in February–April. Multicellular lines (43.5%) were the most common morphology with a maximum in October, followed by isolated cells (33.1%) with a maximum in May–September, and nonlinear clusters (23.4%) with a maximum in November–January. Convective storms were associated with 104 (56.8%) of the tropopause folds identified in this study, with the association strongest in December. Of the 55 tropopause folds observed on the eastern side of an upper-level trough, 37 (67.3%) were associated with convective storms, most commonly in the form of multicellular lines. Of the 128 tropopause folds observed on the western side of an upper-level trough, 42 (32.8%) were associated with convective storms, most commonly isolated cells. These results suggest that more organized storms tend to form in environments favorable for synoptic-scale ascent.