Published in

American Geophysical Union, Geophysical Research Letters, 2(41), p. 314-320, 2014

DOI: 10.1002/2013gl058578

Links

Tools

Export citation

Search in Google Scholar

Unexpected variability of Martian hydrogen escape: CHAFFIN ET AL.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

[1] Mars today is much drier than the Earth, though they likely began with similar relative amounts of water. One potential cause for this discrepancy is hydrogen loss to space, which may have removed a large fraction of Mars’ initial water. Here we demonstrate an order-of-magnitude change in the Martian hydrogen escape rate in 2007, inconsistent with established models for the source of escaping hydrogen. We analyze 121.6 nm (hydrogen Lyman-α) airglow observations made by the ultraviolet spectrometer on the Mars Express spacecraft over the second half of 2007. The enhanced escape rates we observe may be due to lower atmospheric heating and overturn during the 2007 (Mars Year 28) global dust storm, suggesting that hydrogen escape from Mars during dust storms may dominate loss of the planet's water inventory. This scenario has major implications for reconstructing the total amount of water lost to space over Martian history.