Published in

American Chemical Society, Journal of Proteome Research, 5(13), p. 2339-2351, 2014

DOI: 10.1021/pr401157k

Links

Tools

Export citation

Search in Google Scholar

High fat diet induced isoform changes of the Parkinson’s disease protein DJ-1.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Genetic and environmental factors mediate via different physiological and molecular processes a shifted energy balance leading to overweight and obesity. To get insights in the underlying processes involved in energy intake and weight gain, we compared hypothalamic tissue of mice kept on a high-fat or control diet for 10 days by a proteomic approach. Using 2D difference gel electrophoresis in combination with LC-MS/MS, we observed significant abundance changes in 15 protein spots. One isoform of the protein DJ-1 was elevated in the high-fat diet group in the analyzed three different mouse strains SWR/J, C57BL/6N and AKR/J. Large scale validation of DJ-1 isoforms in individual samples and tissues confirmed a shift in the pattern of DJ-1 isoforms towards more acidic isoforms in several brain and peripheral tissues after feeding a high-fat diet for 10 days. The identification of an oxidation of cysteine 106 as well as a 2-succinyl modification of the same residue by mass spectrometry not only explains the isoelectric shift of DJ-1 but also links our results to similar shifts of DJ- 1 observed in neurodegenerative disease states under oxidative stress. We hypothesize that DJ-1 is a common physiological sensor involved in both nutrition-induced effects and neurodegenerative disease states.