Published in

American Institute of Physics, The Journal of Chemical Physics, 3(117), p. 1328

DOI: 10.1063/1.1484378

Links

Tools

Export citation

Search in Google Scholar

Theoretical calculation of the electro-absorption spectrum of the α-sexithiophene single crystal

Journal article published in 2002 by Marcin Andrzejak ORCID, Piotr Petelenz, Michał Slawik, R. W. Munn
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

An extended two-dimensional analogue of the Merrifield model of the mixing between Frenkel and charge-transfer excitons is used to calculate the electro-absorption spectrum of the α-sexithiophene single crystal. The model reflects the symmetry of the crystal and takes into account all the major interactions between the molecules. The input parameters are estimated from independent quantum-chemical and micro-electrostatic calculations. The simulated spectrum is in very good agreement with experiment, both in shape and in absolute amplitude. The results demonstrate that the eigenstates of the crystal between 2.55 and 2.85 eV are primarily of charge-transfer parentage, so that charge-transfer contributions dominate the electro-absorption spectrum in that region. This first successful reproduction of the electro-absorption spectrum of a single crystal is a stringent test of the theoretical description that confirms its validity.