Published in

2011 14th Euromicro Conference on Digital System Design

DOI: 10.1109/dsd.2011.71

Links

Tools

Export citation

Search in Google Scholar

A parallel ray tracing architecture suitable for application-specific hardware and GPGPU implementations

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The Ray Tracing rendering algorithm can produce high-fidelity images of 3-D scenes, including shadow effects, as well as reflections and transparencies. This is currently done at a processing speed of at most 30 frames per second. Therefore, actual implementations of the algorithm are not yet suitable for interactive real-time rendering, which is required in games and virtual reality based applications. Fortunately, the algorithm allows for massive parallelization of its computations. In this paper, we present a parallel architecture for ray tracing based on a uniform spatial subdivision of the scene and exploiting an embedded computation of ray-triangle intersections. This approach allows for a significant acceleration of intersection computations, as well as, a reduction of the total number of the required intersections checks. Furthermore, it allows for these checks to be performed in parallel and in advance for each ray. In this paper we discuss and analyze an ASIP-based implementation using FPGAs and a GPGPU-based parallel implementation of the proposed architecture. The performance of both implementations are reported and compared.