Published in

Wiley, Experimental Dermatology, 7(13), p. 452-460, 2004

DOI: 10.1111/j.0906-6705.2004.00199.x

Links

Tools

Export citation

Search in Google Scholar

Measurement of cytokine expression and Langerhans cell migration in human skin following suction blister formation.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Contact allergen-induced migration of epidermal Langerhans cells (LCs) to draining lymph nodes is dependent upon receipt by LCs of at least two cytokine signals provided by tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-1beta. It has been reported previously that intradermal injection of healthy human volunteers with homologous TNF-alpha or IL-1beta each induces a significant reduction in LC frequency, as measured in epidermal sheets prepared from 6-mm punch biopsies. In the current experiments, we have compared the frequency of LCs in punch biopsies with those obtained concurrently in epidermal sheets from the roofs of suction blisters isolated from the sun-protected buttock skin of healthy adult volunteers. There was a significant, approximately 30%, reduction in CD1a(+) LC numbers in suction blister roofs compared with punch biopsies. Injection of homologous recombinant IL-1beta, a stimulus that provokes measurable epidermal LC mobilization in punch biopsy sites, failed to provoke further LC migration in suction blister sites. These data suggest that the mechanical trauma to the skin caused by the creation of suction blisters provokes the degree of cutaneous inflammation necessary for LC mobilization. The responsive cells (only a proportion of resident LCs, approximately 30%) have already migrated, thus addition of an exogenous cytokine signal (IL-1beta) is without further effect. It is not possible therefore to measure the regulation of LC mobilization by exogenous cytokines in suction blister roofs. However, this technique provides an opportunity to profile induced changes in the cutaneous cytokine environment, with cytokine expression measured by a multiple cytokine array system. Using this technique, intradermal injection of IL-1beta was found to cause a marked upregulation of proinflammatory cytokines including TNF-alpha, IL-6, IL-8, monocyte chemotactic protein-1 (MCP-1) and the anti-inflammatory cytokine IL-10 in fluid from suction blisters raised at the site of injection. In conclusion, the suction blister technique appears to be a powerful tool for measurement of induced changes in cutaneous cytokines.