Published in

Society of Exploration Geophysicists, Geophysics, 5(75), p. Q21-Q34, 2010

DOI: 10.1190/1.3479552

Links

Tools

Export citation

Search in Google Scholar

Appraisal of waveform repeatability for crosshole and hole-to-tunnel seismic monitoring of radioactive waste repositories

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Countries worldwide are seeking solutions for the permanent removal of high-level radioactive waste from the environment. Surrounding the waste with multiple engineered barriers and emplacement in deep geological repositories is widely accepted as a safe means of isolating it from the biosphere for the necessary [Formula: see text]. As a precautionary measure, society demands that repositories be monitored for [Formula: see text] after they are backfilled and sealed. Effective monitoring that does not compromise the engineered and natural barriers is challenging. To address this issue, we investigate the viability of crosshole and hole-to-tunnel seismic methods for remotely monitoring high level radioactive waste repositories. Measurements are made at two underground rock laboratories in Switzerland, one within granitic rock and one within clay-rich sediments. Numerical simulations demonstrate that temporal changes of the monitored features (i.e., bentonite plug, excavation damage zone, sand-filled microtunnel) should produce significant changes in the seismicwaveforms. Nevertheless, inversion for medium-property changes requires that true seismic waveform changes are not overwhelmed by recording variations. We find that a P-wave sparker source is highly repeatable up to frequencies of [Formula: see text] for propagation distances out to tens of meters involved in repository-scale monitoring. Hydrophone repeatability is limited by incoherent high frequency noise and variable hydrophone-borehole coupling conditions, but firmly grouted geophones within the tunnels yield consistent recordings. Three kinds of coherent noise contaminate the data: (1) mechanically induced electrical effects in the hydrophone chains; (2) high currents in the sparker cable, which cause it to oscillate radially as a line source; and (3) tube waves. Our investigations outline a quantitative methodology to assess data-quality requirements for successful monitoring. We suggest that full waveform seismic tomography can be used to monitor radioactive waste emplacement tunnels, provided that careful attention is paid to instrument fidelity and noise suppression.