Published in

American Meteorological Society, Journal of the Atmospheric Sciences, 4(73), p. 1667-1686, 2016

DOI: 10.1175/jas-d-14-0327.1

Links

Tools

Export citation

Search in Google Scholar

Thermally Induced Convective Circulation and Precipitation over an Isolated Volcano

Journal article published in 2015 by Alexandros-Panagioti Poulidis ORCID, Ian A. Renfrew, Adrian J. Matthews
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Intense rainfall over active volcanoes is known to trigger dangerous volcanic hazards, from remobilizing loose volcanic surface material into lahars or mudflows to initiating explosive activity including pyroclastic flows at certain dome-forming volcanoes. However, the effect of the heated volcanic surface on the atmospheric circulation, including any feedback with precipitation, is unknown. This is investigated here, using the Weather Research and Forecasting (WRF) Model. The recent activity at the Soufrière Hills Volcano (SHV), Montserrat, is a well-documented case of such rainfall–volcano interaction and is used as a template for these experiments. The volcano is represented in the model by an idealized Gaussian mountain, with an imposed realistic surface temperature anomaly on the volcano summit. A robust increase in precipitation over the volcano is simulated for surface temperature anomalies above approximately 40°C, an area-average value that is exceeded at the SHV. For wind speeds less than 4 m s−1 and a range of realistic atmospheric conditions, the precipitation increase is well above the threshold required to trigger volcanic hazards (5–10 mm h−1). Hence, the thermal atmospheric forcing due to an active, but nonerupting, volcano appears to be an important factor in rainfall–volcano interactions and should be taken account of in future hazard studies.