Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Integrative Biology, 2(3), p. 86

DOI: 10.1039/c0ib00075b

Links

Tools

Export citation

Search in Google Scholar

Multi-scale Modelling and Simulation in Systems Biology

Journal article published in 2011 by Joseph O. Dada and Pedro Mendes, Pedro Mendes ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The aim of systems biology is to describe and understand biology at a global scale where biological functions are recognised as a result of complex mechanisms that happen at several scales, from the molecular to the ecosystem. Modelling and simulation are computational tools that are invaluable for description, prediction and understanding these mechanisms in a quantitative and integrative way. Therefore the study of biological functions is greatly aided by multi-scale methods that enable the coupling and simulation of models spanning several spatial and temporal scales. Various methods have been developed for solving multi-scale problems in many scientific disciplines, and are applicable to continuum based modelling techniques, in which the relationship between system properties is expressed with continuous mathematical equations or discrete modelling techniques that are based on individual units to model the heterogeneous microscopic elements such as individuals or cells. In this review, we survey these multi-scale methods and explore their application in systems biology.