Published in

American Chemical Society, Journal of Proteome Research, 12(10), p. 5326-5337, 2011

DOI: 10.1021/pr200584y



Export citation

Search in Google Scholar

Analysis of Secretome Changes Uncovers an Autocrine/Paracrine Component in the Modulation of Cell Proliferation and Motility by c-Myc

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO


Proteins secreted by cancer cells are a major component of tumor microenvironment. However, little is known on the impact of single oncogenic lesions on the expression of secreted proteins at early stages of tumor development. Because c-Myc overexpression is among the most frequent alterations in cancer, here we investigated the effect of sustained c-Myc expression on the secretome of a nontransformed human epithelial cell line (hT-RPE). By using a quantitative proteomic approach, we have identified 125 proteins in conditioned media of hT-RPE/MycER cells upon c-Myc induction. Analysis of the 49 proteins significantly down-regulated by c-Myc revealed a marked enrichment of factors associated with growth inhibition and cellular senescence. Accordingly, media conditioned by hT-RPE cells expressing c-Myc show an increased ability to sustain hT-RPE cellular proliferation/viability. We also find a marked down-regulation of several structural and regulatory components of the extracellular matrix (ECM), which correlates with an increased chemotactic potency of the conditioned media toward fibroblasts, a major cellular component of tumor stroma. In accordance with these data, the expression of the majority of the genes encoding proteins down- regulated in hT-RPE was significantly reduced also in colorectal adenomatous polyps, early tumors in which c-Myc is invariably overexpressed. These findings help to elucidate the significance of c-Myc overexpression at early stages of tumor development and uncover a remarkable autocrine/paracrine component in the ability of c-Myc to stimulate proliferation, sustain tumor maintenance, and modulate cell migration.