Published in

Wiley Open Access, Cancer Medicine, 5(3), p. 1368-1376, 2014

DOI: 10.1002/cam4.295

Links

Tools

Export citation

Search in Google Scholar

Volumetric PET/CT parameters predict local response of head and neck squamous cell carcinoma to chemoradiotherapy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

It is not well established whether pretreatment 18F-FDG PET/CT can predict local response of head and neck squamous cell carcinoma (HNSCC) to chemoradiotherapy (CRT). We examined 118 patients: 11 with nasopharyngeal cancer (NPC), 30 with oropharyngeal cancer (OPC), and 77 with laryngohypopharyngeal cancer (LHC) who had completed CRT. PET/CT parameters of primary tumor, including metabolic tumor volume (MTV), total lesion glycolysis (TLG), and maximum and mean standardized uptake value (SUVmax and SUVmean), were correlated with local response, according to primary site and human papillomavirus (HPV) status. Receiver-operating characteristic analyses were made to access predictive values of the PET/CT parameters, while logistic regression analyses were used to identify independent predictors. Area under the curve (AUC) of the PET/CT parameters ranged from 0.53 to 0.63 in NPC and from 0.50 to 0.54 in OPC. HPV-negative OPC showed AUC ranging from 0.51 to 0.58, while all of HPV-positive OPCs showed complete response. In contrast, AUC ranged from 0.71 to 0.90 in LHC. Moreover, AUCs of MTV and TLG were significantly higher than those of SUVmax and SUVmean (P < 0.01). After multivariate analysis, high MTV >25.0 mL and high TLG >144.8 g remained as independent, significant predictors of incomplete response compared with low MTV (odds ratio [OR], 13.4; 95% confidence interval [CI], 2.5–72.9; P = 0.003) and low TLG (OR, 12.8; 95% CI, 2.4–67.9; P = 0.003), respectively. In conclusion, predictive efficacy of pretreatment 18F-FDG PET/CT varies with different primary sites and chosen parameters. Local response of LHC is highly predictable by volume-based PET/CT parameters.