Published in

American Chemical Society, ACS Nano, 10(3), p. 3063-3068, 2009

DOI: 10.1021/nn900778t

Links

Tools

Export citation

Search in Google Scholar

Controlled Manipulation of Bacteriophages Using Single-Virus Force Spectroscopy.

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A method is described for the site-directed manipulation of single filamentous bacteriophages, by using phage display technology and atomic force microscopy. f1 filamentous bacteriophages were genetically engineered to display His-tags on their pIX tail. Following adsorption on nitrilotriacetate-terminated surfaces, force spectroscopy with tips bearing monoclonal anti-pIII antibodies was used to pull on individual phages via their pIII head. Analysis of the force-extension profiles revealed that upon pulling, the phages are progressively straightened into an extended orientation until rupture of the anti-pIII/pIII complex. The single-virus manipulation technique presented here provides new opportunities for understanding the forces driving cell-virus and material-virus interactions, and for characterizing the binding properties of polypeptide sequences or proteins selected by the phage display technology.