Dissemin is shutting down on January 1st, 2025

Published in

Cell Press, Chemistry and Biology, 2(17), p. 107-115, 2010

DOI: 10.1016/j.chembiol.2010.01.009

Links

Tools

Export citation

Search in Google Scholar

Functionalized Carbon Nanotubes for Probing and Modulating Molecular Functions

Journal article published in 2010 by Cecilia Menard-Moyon ORCID, Kostas Kostarelos, Maurizio Prato, Alberto Bianco
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Carbon nanotubes (CNTs) entered the domain of biological research a few years ago, creating a significant amount of interest due to their extraordinary physicochemical properties. The integration of CNT-based strategies with biology necessitates a multidisciplinary approach that requires competences in the diverse fields of chemistry, physics, and life sciences. In the biomedical domain CNTs are extensively explored as novel drug delivery systems for therapy and diagnosis. Additionally, CNTs can also be designed as new tools for modulation of molecular functions, by directly affecting various biological processes or by interaction with bioactive molecules. The aim of this review is to discuss how CNTs can be exploited as new probes for molecular functions. The different sections illustrate various applications of CNTs, including gene silencing, surface cell interactions via glycoproteins, biosensing, intracellular drug delivery using an atomic force microscopy tip-based nanoinjector, modulation of antibody/antigen interaction and enzyme activity, and blocking of ion channels. ; Times Cited: 33 0 33