Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Medical Physics, 6(31), p. 1462-1472, 2004

DOI: 10.1118/1.1750992

Links

Tools

Export citation

Search in Google Scholar

Solid-state fluoroscopic imager for high-resolution angiography: Physical characteristics of an 8 cm×8 cm experimental prototype

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper, the performance of an 8 cm×8 cm three-side buttable charge-coupled device (CCD)-based imager specially designed for high-resolution fluoroscopy and operating in fluoroscopic (30 frames/second) mode is presented in terms of the presampling modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). The 8 cm×8 cm CCD imager is coupled to a 450 μm thick CsI:Tl scintillator by nondemagnifying (straight, 1:1) fiberoptics. The CCD imager has a fundamental pixel pitch of 39 μm and incorporates an optically opaque interline (data) channel. The CCD imager was operated at 156 μm pixel pitch by binning 4×4 adjacent pixels prior to readout. The fluoroscopic image lag was measured and accounted for in the DQE estimate to provide lag-corrected DQE. The measured limiting spatial resolution at 10% presampling MTF with the imager operated at 156 μm pixel pitch (Nyquist sampling limit: 3.21 cy/mm) was 3.6 cy/mm. In the pulsed fluoroscopic mode, the first-frame image lag was less than 0.9%. The lag-corrected DQE(0) of ~0.62 was achieved even at a low fluoroscopic exposure rate of 1 μR/frame. Grid phantom measurements indicate no appreciable distortion. Results from DQE and image lag measurements at fluoroscopic exposure rates combined with the high spatial resolution observed from the MTF suggest that this type of imager or its variants may be a potential candidate for high-resolution neuro-interventional imaging, cardiovascular imaging, pediatric angiography, and small animal imaging. Since the CCD is three-side buttable, four such CCD modules can be joined to form a 2×2 matrix providing a field of view of 16 cm×16 cm.