American Physical Society, Physical Review Letters, 18(108)
DOI: 10.1103/physrevlett.108.187202
Full text: Download
In domain wall (DW) excitation experiments, nonlinearity (NL) intrinsic to the DW dynamics is often hard to distinguish from perturbation due to the confining potential or DW distortion. Here we numerically investigate the dynamic oscillations of magnetostatically coupled DWs: a system well understood in the quasistatic limit. NL is observed, even for a harmonic potential, due to the intrinsic DW motion. This behavior is principally dependent on terms normally associated with the DW canonical momentum and is in contrast with a NL restoring potential. This NL is not observable in quasistatic measurements, relatively insensitive to the confining potential, and may be tuned by the nanowire parameters. The shown NLs are present in any DW restoring potential and must be accounted for when probing DW potential landscapes.