Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Molecular and Cellular Cardiology, 2(48), p. 415-423, 2010

DOI: 10.1016/j.yjmcc.2009.10.006

Links

Tools

Export citation

Search in Google Scholar

Mesoangioblasts from ventricular vessels can differentiate in vitro into cardiac myocytes with sinoatrial-like properties.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cardiac mesoangioblasts (MABs) are a class of vessel-associated clonogenic, self-renewing progenitor cells, recently identified in the post-natal murine heart and committed to cardiac differentiation. Cardiomyocytes generated during cardiogenesis from progenitor cells acquire several distinct phenotypes, corresponding to different functional properties in diverse structures of the adult heart. Given the special functional relevance to rhythm generation and rate control of sinoatrial cells, and in view of their prospective use in therapeutical applications, we sought to determine if, and to what extent, cardiac mesoangioblasts could also differentiate into myocytes with properties typical of mature pacemaker myocytes. We report here that a subpopulation of cardiac mesoangioblasts, induced to differentiate in vitro into cardiomyocytes, do acquire a phenotype with specific mature pacemaker myocytes properties. These include expression of the HCN4 isoform of pacemaker ("funny", f-) channels and connexin 45 (Cx45), as well as reduced expression of inwardly-rectifying potassium channels. Furthermore, MAB-derived myocytes form agglomerates of pacing cells displaying stable rhythmic activity, and as in native cardiac pacemaker cells, f-channel modulation by autonomic transmitters contributes to control of spontaneous rate in differentiated mesoangioblasts. These data represent the first evidence for in vitro generation of pacemaker-like myocytes from proliferating non-embryonic stem/progenitor cells.