Published in

Future Medicine, Nanomedicine, 9(8), p. 1443-1458, 2013

DOI: 10.2217/nnm.12.173

Links

Tools

Export citation

Search in Google Scholar

Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: Cells secrete different types of membrane vesicles (MVs), which may act as important entities in normal human physiology and in various pathological processes. The established methods for quantification of MVs require purification or preanalytical handling of samples with labeling moieties. Aim: The authors’ aim was to develop a method for high-throughput, labeling-free quantification of nonpurified MVs. Materials & methods: Scanning ion occlusion sensing technology, which relies on the detection of particles upon their movement through a nanopore, was investigated for the ability to quantify nanosized MVs (<400 nm) in bodily fluids and cell culture supernatants. Results: Scanning ion occlusion sensing allowed for rapid and easy measurement of the concentration of MVs in all biological fluids tested. Conclusion: Scanning ion occlusion sensing technology enables the quantification of MVs in biological samples without the requirement of MV isolation and/or labeling. This offers a highly valuable addition to the currently used repertoire of MV quantification methods. Original submitted 26 April 2012; Revised submitted 7 September 2012; Published online 5 February 2013