Published in

Portland Press, Biochemical Society Transactions, 4(36), p. 658-664, 2008

DOI: 10.1042/bst0360658

Links

Tools

Export citation

Search in Google Scholar

Clues to the mechanism of action of eIF2B, the guanine-nucleotide-exchange factor for translation initiation.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A variety of cellular processes rely on G-proteins, which cycle through active GTP-bound and inactive GDP-bound forms. The switch between these states is commonly regulated by GEFs (guanine-nucleotide-exchange factors) and GAPs (GTPase-activating proteins). Although G-proteins have structural similarity, GEFs are very diverse proteins. A complex example of this system is seen in eukaryotic translation initiation between eIF (eukaryotic initiation factor) 2, a G-protein, its five-subunit GEF, eIF2B, and its GAP, eIF5. eIF2 delivers Met-tRNA(i) (initiator methionyl-tRNA) to the 40S ribosomal subunit before mRNA binding. Upon AUG recognition, eIF2 hydrolyses GTP, aided by eIF5. eIF2B then re-activates eIF2 by removing GDP, thereby promoting association of GTP. In the present article, we review data from studies of representative G-protein-GEF pairs and compare these with observations from our research on eIF2 and eIF2B to propose a model for how interactions between eIF2B and eIF2 promote guanine nucleotide exchange.