Published in

Elsevier, Aquaculture, 1(262), p. 29-40, 2007

DOI: 10.1016/j.aquaculture.2006.10.001

Links

Tools

Export citation

Search in Google Scholar

Denaturing Gradient Gel Electrophoresis (DGGE) as a tool for the characterisation of Brachionus sp strains

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Many zooplanktonic organisms, like the cyclic parthenogenetic rotifer Brachionus plicatilis (Rotifera: Monogononta), are actually a complex of species and biotypes with a high degree of morphological similarity (i.e. cryptic species). Various phylogenetic studies with molecular markers (e.g. ITS1 and COI) on wild Brachionus populations described the presence of at least nine genetically divergent Brachionus species and biotypes. Because different studies found evidence that these cryptic species and biotypes differ significantly in ecological preferences and thus probably behave differently in response to rearing conditions in the hatchery, questions rise on the actual identity of the rotifer strains used in aquaculture, where Brachionus discrimination is still based on morphology. This study is a part of an investigation of the genetic make-up of strains used in hatcheries, aquaculture research institutes and laboratories, and describes the rapid and sensitive PCR–DGGE method for the detection of Brachionus species and biotypes based on nucleotide sequence variation within the mitochondrial 16S rRNA gene. Considerable genetic diversity was found, albeit smaller within hatcheries than within laboratories and aquaculture research institutes. All 16S haplotypes produced an unambiguous DGGE fingerprint out of which a database was constructed.