American Chemical Society, Journal of the American Chemical Society, 8(132), p. 2591-2599, 2010
DOI: 10.1021/ja908689f
Full text: Download
The mechanism by which the 1,2,4-benzotriazine 1,4-dioxide (BTO) class of bioreductive hypoxia-selective prodrugs (HSPs) form reactive radicals that kill cancer cells has been investigated by steady-state radiolysis, pulse radiolysis (PR), electron paramagnetic resonance (EPR), and density functional theory (DFT) calculations. Tirapazamine (TPZ, 3-amino BTO, 1) and a series of 3-substituted analogues, -H (2), -methyl (3), -ethyl (4), -methoxy (5), -ethoxymethoxy (6), and -phenyl (7), were reduced in aqueous solution under anaerobic steady-state radiolysis conditions, and their radicals were found to remove the substrates by short chain reactions of different lengths in the presence of formate ions. Multiple carbon-centered radical intermediates, produced upon anaerobic incubation of the compounds with cytochrome P(450) reductase enriched microsomes, were trapped by N-tert-butyl-alpha-phenylnitrone and observed using EPR. The highly oxidizing oxymethyl radical, from compound 5, was identified, and experimental spectra obtained for compounds 1, 2, 3, and 7 were well simulated after the inclusion of aryl radicals. The identification of a range of oxidizing radicals in the metabolism of the BTO compounds gives a new insight into the mechanism by which these HSPs can cause a wide variety of damage to biological targets such as DNA.