Dissemin is shutting down on January 1st, 2025

Links

Tools

Export citation

Search in Google Scholar

GPS ambiguity resolution and validation under multipath effects: Improvements using wavelets

Proceedings article published in 1970 by E. M. Souza ORCID, P. Tregoning, J. F. G. Monico, C. Rizos
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Integer carrier phase ambiguity resolution is the key to rapid and high-precision global navigation satellite system (GNSS) positioning and navigation. As important as the integer ambiguity estimation, it is the validation of the solution, because, even when one uses an optimal, or close to optimal, integer ambiguity estimator, unacceptable integer solution can still be obtained. This can happen, for example, when the data are degraded by multipath effects, which affect the real-valued float ambiguity solution, conducting to an incorrect integer (fixed) ambiguity solution. Thus, it is important to use a statistic test that has a correct theoretical and probabilistic base, which has became possible by using the Ratio Test Integer Aperture (RTIA) estimator. The properties and underlying concept of this statistic test are shortly described. An experiment was performed using data with and without multipath. Reflector objects were placed surrounding the receiver antenna aiming to cause multipath. A method based on multiresolution analysis by wavelet transform is used to reduce the multipath of the GPS double difference (DDs) observations. So, the objective of this paper is to compare the ambiguity resolution and validation using data from these two situations: data with multipath and with multipath reduced by wavelets. Additionally, the accuracy of the estimated coordinates is also assessed by comparing with the ground truth coordinates, which were estimated using data without multipath effects. The success and fail probabilities of the RTIA were, in general, coherent and showed the efficiency and the reliability of this statistic test. After multipath mitigation, ambiguity resolution becomes more reliable and the coordinates more precise. © Springer-Verlag Berlin Heidelberg 2007.