Published in

Wiley, Journal of Leukocyte Biology, 6(90), p. 1177-1190, 2011

DOI: 10.1189/jlb.0610342

Links

Tools

Export citation

Search in Google Scholar

Facilitated antigen uptake and timed exposure to TLR ligands dictate the antigen-presenting potential of plasmacytoid DCs

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Subsets of antigen-presenting cDCs have a differential capacity to present exogenous and endogenous protein antigens to CD4(+) and/or CD8(+) T lymphocytes, depending on expression of antigen-uptake receptors, processing machinery, and microbial instruction. pDCs are also capable of antigen presentation, but the conditions under which they do this have not been systematically addressed. Highly purified cDCs and pDCs were exposed to exogenous, soluble OVA peptide or whole protein. Alternatively, they were made to express cytoplasmic or endosomal OVA by retroviral transduction or by infection with influenza virus containing OVA epitopes. Like cDCs, pDCs expressed the MHC I processing machinery and could present endogenous or cross-present exogenous OVA to CD8(+) T cells, provided they had been stimulated by CpG motif TLR9 ligands or by influenza. Unlike cDCs, the cross-priming activity of pDCs was enhanced, not decreased, by simultaneous TLR stimulation. Processing and presentation of exogenous OVA to CD4(+) T cells required TLR9 ligation prior to antigen encounter and addition of OVA-specific Igs. These stimuli up-regulated critical MHC II processing machinery and enhanced routing to acidic endosomal organelles in a Fc gamma RII-dependent manner. Endogenous antigen was not presented to CD4(+) T cells when expressed in the cytoplasm of pDCs by retrovirus or contained in influenza, unless an Ii-chain-derived endosomal routing signal was present. Thus, timing of TLR ligation and facilitated antigen uptake dictate the potential of pDCs to present endogenous or exogenous antigen by influencing endosomal traffic and antigen-processing machinery.