Published in

Wiley, FEBS Journal, 14(278), p. 2408-2418, 2011

DOI: 10.1111/j.1742-4658.2011.08163.x

Links

Tools

Export citation

Search in Google Scholar

Concepts and tools to exploit the potential of bacterial inclusion bodies in protein science and biotechnology

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cells have evolved complex and overlapping mechanisms to protect their proteins from aggregation. However, several reasons can cause the failure of such defences, among them mutations, stress conditions and high rates of protein synthesis, all common consequences of heterologous protein production. As a result, in the bacterial cytoplasm several recombinant proteins aggregate as insoluble inclusion bodies. The recent discovery that aggregated proteins can retain native-like conformation and biological activity has opened the way for a dramatic change in the means by which intracellular aggregation is approached and exploited. This paper summarizes recent studies towards the direct use of inclusion bodies in biotechnology and for the detection of bottlenecks in the folding pathways of specific proteins. We also review the major biophysical methods available for revealing fine structural details of aggregated proteins and which information can be obtained through these techniques.