Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Langmuir, 49(28), p. 16738-16744, 2012

DOI: 10.1021/la303891j

Links

Tools

Export citation

Search in Google Scholar

High-Resolution Imaging of Chemical and Biological Sites on Living Cells Using Peak Force Tapping Atomic Force Microscopy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Currently, there is a growing need for methods that can quantify and map the molecular interactions of biological samples, both with high-force sensitivity and high spatial resolution. Force-volume imaging is a valuable atomic force microscopy (AFM) modality for probing specific sites on biosurfaces. However, the low speed and poor spatial resolution of this method have severely hampered its widespread use in life science research. We use a novel AFM mode (i.e., peak force tapping with chemically functionalized tips) to probe the localization and interactions of chemical and biological sites on living cells at high speed and high resolution (8 min for 1 μm × 1 μm images at 512 pixels × 512 pixels). First, we demonstrate the ability of the method to quantify and image hydrophobic forces on organic surfaces and on microbial pathogens. Next, we detect single sensor proteins on yeast cells, and we unravel their mechanical properties in relation to cellular function. Owing to its key capabilities (quantitative mapping, resolution of a few nanometers, and true correlation with topography), this novel biochemically sensitive imaging technique is a powerful complement to other advanced AFM modes for quantitative, high-resolution bioimaging.