Published in

American Chemical Society, Langmuir, 12(26), p. 10223-10233, 2010

DOI: 10.1021/la100371w

Links

Tools

Export citation

Search in Google Scholar

Metallophosphazene Precursor Routes to the Solid-State Deposition of Metallic and Dielectric Microstructures and Nanostructures on Si and SiO 2

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Articulo de publicacion ISI ; We present a method for the preparation and deposition of metallic microstructures and nanostructures deposited on silicon and silica surfaces by pyrolysis in air at 800 C of the corresponding metallophosphazene (cyclic or polymer). Atomic force microscopy studies reveal that the morphology is dependent on the polymeric or oligomeric nature of the phosphazene precursor, on the preparation method used, and on the silicon substrate surface (crystalline or amorphous) and its prior inductively couple plasma etching treatment. Microscale and nanoscale structures and high-surface-area thin films of gold, palladium, silver, and tin were successfully deposited from their respective newly synthesized precursors. The characteristic morphology of the deposited nanostructures resulted in varied roughness and increased surface area and was observed to be dependent on the precursor and the metal center. In contrast to island formation from noble metal precursors, we also report a coral of SnP2O7 growth on Si and SiO2 surfaces from the respective Sn polymer precursor, leaving a self-affine fractal structure with a well-defined roughness exponent that appears to be independent (within experimental error) of the average size of the islands. The nature of the precursor will be shown to influence the degree of surface features, and the mechanism of their formation is presented. The method reported here constitutes a new route to the deposition of single-crystal metallic, oxidic, and phosphate nanostructures and thin films on technologically relevant substrates.