Published in

Elsevier, Neurobiology of Disease, 1(33), p. 1-11, 2009

DOI: 10.1016/j.nbd.2008.09.006

Links

Tools

Export citation

Search in Google Scholar

The neuroprotective impact of the leak potassium channel TASK1 on stroke development in mice

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Oxygen depletion (O2) and a decrease in pH are initial pathophysiological events in stroke development, but secondary mechanisms of ischemic cell death are incompletely understood. By patch-clamp recordings of brain slice preparations we show that TASK1 and TASK3 channels are inhibited by pH-reduction (42 ± 2%) and O2 deprivation (36 ± 5%) leading to membrane depolarization, increased input resistance and a switch in action potential generation under ischemic conditions. In vivo TASK blockade by anandamide significantly increased infarct volumes at 24h in mice undergoing 30 min of transient middle cerebral artery occlusion (tMCAO). Moreover, blockade of TASK channels accelerated stroke development. Supporting these findings TASK1−/− mice developed significantly larger infarct volumes after tMCAO accompanied by worse outcome in functional neurological tests compared to wild type mice. In conclusion, our data provide evidence for an important role of functional TASK channels in limiting tissue damage during cerebral ischemia.