Published in

American Diabetes Association, Diabetes Care, 8(36), p. 2331-2338, 2013

DOI: 10.2337/dc12-1760

Links

Tools

Export citation

Search in Google Scholar

Circulating Lysophosphatidylcholines Are Markers of a Metabolically Benign Nonalcoholic Fatty Liver

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

OBJECTIVE Nonalcoholic fatty liver (NAFL) is thought to contribute to insulin resistance and its metabolic complications. However, some individuals with NAFL remain insulin sensitive. Mechanisms involved in the susceptibility to develop insulin resistance in humans with NAFL are largely unknown. We investigated circulating markers and mechanisms of a metabolically benign and malignant NAFL by applying a metabolomic approach. RESEARCH DESIGN AND METHODS A total of 265 metabolites were analyzed before and after a 9-month lifestyle intervention in plasma from 20 insulin-sensitive and 20 insulin-resistant subjects with NAFL. The relevant plasma metabolites were then tested for relationships with insulin sensitivity in 17 subjects without NAFL and in plasma from 29 subjects with liver tissue samples. RESULTS The best separation of the insulin-sensitive from the insulin-resistant NAFL group was achieved by a metabolite pattern including the branched-chain amino acids leucine and isoleucine, ornithine, the acylcarnitines C3:0-, C16:0-, and C18:0-carnitine, and lysophosphatidylcholine (lyso-PC) C16:0 (area under the ROC curve, 0.77 [P = 0.00023] at baseline and 0.80 [P = 0.000019] at follow-up). Among the individual metabolites, predominantly higher levels of lyso-PC C16:0, both at baseline (P = 0.0039) and at follow-up (P = 0.001), were found in the insulin-sensitive compared with the insulin-resistant subjects. In the non-NAFL groups, no differences in lyso-PC C16:0 levels were found between the insulin-sensitive and insulin-resistant subjects, and these relationships were replicated in plasma from subjects with liver tissue samples. CONCLUSIONS From a plasma metabolomic pattern, particularly lyso-PCs are able to separate metabolically benign from malignant NAFL in humans and may highlight important pathways in the pathogenesis of fatty liver–induced insulin resistance.