Published in

Optica, Optics Express, 13(16), p. 9918, 2008

DOI: 10.1364/oe.16.009918

Links

Tools

Export citation

Search in Google Scholar

Individually-addressable flip-chip AlInGaN micropixelated light emitting diode arrays with high continuous and nanosecond output power

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Micropixelated blue (470 nm) and ultraviolet (370 nm) AlInGaN light emitting diode ('micro-LED') arrays have been fabricated in flip-chip format with different pixel diameters (72 microm and 30 microm at, respectively, 100 and 278 pixels/mm(2)). Each micro-LED pixel can be individually-addressed and the devices possess a specially designed n-common contact incorporated to ensure uniform current injection and consequently uniform light emission across the array. The flip-chip micro-LEDs show, per pixel, high continuous output intensity of up to 0.55 microW/microm(2) (55 W/cm(2)) at an injection current density of 10 kA/cm(2) and can sustain continuous injection current densities of up to 12 kA/cm(2) before breakdown. We also demonstrate that nanosecond pulsed output operation of these devices with per pixel onaxis average peak intensity up to 2.9 microW/microm(2) (corresponding to energy of 45pJ per 22ns optical pulse) can be achieved. We investigate the pertinent performance characteristics of these arrays for micro-projection applications, including the prospect of integrated optical pumping of organic semiconductor lasers.