Published in

Wiley, Journal of Inherited Metabolic Disease, 5(30), p. 681-689, 2007

DOI: 10.1007/s10545-007-0487-0

Links

Tools

Export citation

Search in Google Scholar

L-2-hydroxyglutaric aciduria, a defect of metabolite repair.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

L-2-hydroxyglutaric aciduria is a metabolic disorder in which L-2-hydroxyglutarate accumulates as a result of a deficiency in FAD-linked L-2-hydroxyglutarate dehydrogenase, a mitochondrial enzyme converting L-2-hydroxyglutarate to alpha-ketoglutarate. The origin of the L-2-hydroxyglutarate, which accumulates in this disorder, is presently unknown. The oxidation-reduction potential of the 2-hydroxyglutarate/alpha-ketoglutarate couple is such that L-2-hydroxyglutarate could potentially be produced through the reduction of alpha-ketoglutarate by a NAD- or NADP-linked oxidoreductase. In fractions of rat liver cytosolic extracts that had been chromatographed on an anion exchanger we detected an enzyme reducing alpha-ketoglutarate in the presence of NADH. This enzyme co-purified with cytosolic L-malate dehydrogenase (cMDH) upon further chromatography on Blue Sepharose. Mitochondrial fractions also contained an NADH-linked, 'alpha-ketoglutarate reductase', which similarly co-purified with mitochondrial L-malate dehydrogenase (mMDH). Purified mMDH catalysed the reduction of alpha-ketoglutarate to L-2-hydroxyglutarate with a catalytic efficiency that was about 10(7)-fold lower than that observed with oxaloacetate. For the cytosolic enzyme, this ratio amounted to 10(8), indicating that this enzyme is more specific. Both cMDH and mMDH are highly active in tissues and alpha-ketoglutarate is much more abundant than oxaloacetate and more concentrated in mitochondria than in the cytosol. As a result of this, the weak activity of mMDH on alpha-ketoglutarate is sufficient to account for the amount of L-2-hydroxyglutarate that is excreted by patients deficient in FAD-linked L-2-hydroxyglutarate dehydrogenase. The latter enzyme appears, therefore, to be responsible for a 'metabolite repair' phenomenon and to belong to the expanding class of 'house-cleaning' enzymes.