Published in

American Chemical Society, Journal of Proteome Research, 4(13), p. 1785-1793, 2014

DOI: 10.1021/pr401104b

Links

Tools

Export citation

Search in Google Scholar

Holistic view on the extended substrate specificities of orthologous granzymes

Journal article published in 2014 by Kim Plasman, Sebastian Maurer-Stroh, Kris Gevaert ORCID, Petra Van Damme ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

As proteases sculpt the proteome in both homeostatic and pathogenic processes, unraveling their primary signaling pathways and key substrates is of utmost importance. Hence, with the development of procedures enriching for proteolysis-indicative peptides and the availability of more sensitive mass spectrometers, protease degradomics technologies are ideally suited to gain insight into a protease's substrate repertoire and substrate-specificity profile. Especially, knowledge on discriminating sequence features among closely related homologues and orthologues may aid in identifying key targets and developing protease-specific inhibitors. Although clever labeling strategies allow one to compare the substrate repertoires and critical protease substrate recognition motifs of several proteases in a single analysis, comprehensive views of (differences in) substrate subsite occupancies of entire protease families is lacking. Therefore, we here describe a hierarchical cluster analysis of the positional proteomics determined cleavage sites of a family of serine proteases: the granzymes. We and others previously assigned clear murine orthologues for all 5 human granzymes. As such, hierarchical clustering of the sequences surrounding granzyrne cleavage sites reveals detailed insight into granzyme-specific differences in substrate selection and thereby deorphanizes the substrate specificity profiles and repertoires of the human and murine orthologous granzymes A, B, H/C, M, and K. KEYWORDS: granzyme, positional proteomics, degradomics, N-terminal COFRADIC, protease, substrate, substrate specificity profiles and repertoires of the human and murine orthologous granzymes A, B, H/C, M, and K.