Published in

Wiley Open Access, FASEB Journal, 3(21), p. 872-884, 2006

DOI: 10.1096/fj.06-6054com

Links

Tools

Export citation

Search in Google Scholar

Endoplasmic reticulum stress exacerbates ischemia-reperfusion-induced apoptosis through attenuation of Akt protein synthesis in human choriocarcinoma cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Oxidative stress is central to ischemia-reperfusion injury. The role of the endoplasmic reticulum (ER) in this process is uncertain. In ER signaling, PERK-Nrf2 and Ire-CHOP are two pathways that determine cell fate under stress. PERK-Nrf2 up-regulates antioxidant enzyme expression whereas Ire-CHOP promotes apoptosis. We have identified a novel pathway in ER stress-induced apoptosis after ischemia-reperfusion in vitro involving translational suppression of the survival kinase PKB/Akt (Akt), and elucidated an alternative protective role of antioxidants in the regulation of Akt activity. Using human choriocarcinoma JEG-3 cells, we found that sustained activation of ER stress by tunicamycin or thapsigargin exacerbated apoptosis in oxygen-glucose-deprived cells during reoxygenation. This was mediated via a reduction in phosphorylated Akt secondary to down-regulation of protein translation rather than suppression of phosphorylation. Transient overexpression of wild-type Akt, but not kinase-dead Akt, in JEG-3 cells diminished tunicamycin-OGD reoxygenation-induced apoptosis. The antioxidants Trolox and Edaravone reduced apoptosis, but the protective effect of Trolox was abrogated by the PI3K inhibitor, LY294002. We speculate that sustained ER stress may contribute to the placental dysfunction seen in human pregnancy complications.—Yung, H-w., Korolchuk, S., Tolkovsky, A. M., Charnock-Jones, D. S., Burton, G. J. Endoplasmic reticulum stress exacerbates ischemia-reperfusion-induced apoptosis through attenuation of Akt protein synthesis in human choriocarcinoma cells.