Published in

American Chemical Society, ACS Applied Materials and Interfaces, 12(6), p. 9572-9583, 2014

DOI: 10.1021/am501966n

Links

Tools

Export citation

Search in Google Scholar

Control of the particle distribution in inkjet printing through an evaporation-driven sol-gel transition.

Journal article published in 2014 by Emma L. Talbot, Lisong Yang ORCID, Arganthaël Berson, Colin D. Bain
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A ring stain is often an undesirable consequence of droplet drying. Particles inside evaporating droplets with a pinned contact line are transported toward the periphery by radial flow. In this paper, we demonstrate how suspensions of laponite can be used to control the radial flow inside picoliter droplets and produce uniform deposits. The improvement in homogeneity arises from a sol–gel transition during evaporation. Droplets gel from the contact line inward, reducing the radial motion of particles and thus inhibiting the formation of a ring stain. The internal flows and propagation of the gelling front were followed by high-speed imaging of tracer particles during evaporation of the picoliter droplets of water. In the inkjet nozzle, the laponite network is broken down under high shear. Recovery of the low shear viscosity of laponite suspensions was shown to be fast with respect to the lifetime of the droplet, which was instrumental in controlling the deposit morphology. The radial and vertical particle distributions within dried deposits were measured for water droplets loaded with 1 and 5 wt % polystyrene spheres and various concentrations of laponite. Aggregation of the polystyrene spheres was suppressed by the addition of colloidal silica. The formulation can be tuned to vary the deposit profile from a ring to a pancake or a dome.