Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Fundamental & Clinical Pharmacology, 6(17), p. 673-681

DOI: 10.1046/j.1472-8206.2003.00198.x

Links

Tools

Export citation

Search in Google Scholar

Vasorelaxant effects of grape polyphenols in rat isolated aorta. Possible involvement of a purinergic pathway

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The purpose of this study was to investigate the mechanism of the vascular relaxation produced by polyphenolic substances from red wine, with a particular focus on the possible involvement of purinoceptors. With this aim, relaxing responses induced by procyanidin from grape seeds (GSP), anthocyanins, catechin and epicatechin were assessed in rat isolated aortic rings left intact (+E) or endothelium-denuded (-E). In preparations precontracted with noradrenaline, incubation with NG-nitro-L-arginine methyl ester (100 microM, 30 min) fully inhibited the GSP-induced relaxations. Concentration-effect curves to these substances (from 10(-7) to 10(-1) g/L) were determined in depolarized (60 mM KCl) preparations in control condition, after incubation with reactive blue 2 (an antagonist of P2Y purinoceptors, 30 microM), with apyrase (an enzyme which hydrolyses ATP and ADP, 0.8 U/mL) or with alpha,beta-methylene ATP (an inhibitor of ecto ATPases, 10 microM). In (+E) rings, relaxations (expressed as percentage of initial contraction) were 41 +/- 2 and 37 +/- 3 for GSP and anthocyanins, respectively. Only modest relaxations (ca. 10%) were observed in (-E) rings, as it was the case for catechin and epicatechin in (+/- E) rings. Reactive blue 2 or apyrase inhibited the GSP- and anthocyanin-induced relaxations in (+E) rings, while alpha,beta-methylene ATP shifted to the left the relaxation curves obtained with GSP. These data confirm that modest relaxations observed with catechin and epicatechin are not endothelium-dependent but that GSP and anthocyanins induce a relaxing effect, which is related to the integrity of the endothelium and the synthesis and release of nitric oxide (NO). Furthermore, the inhibition by apyrase and the increase by ecto-ATPase inhibition of the GSP- and anthocyanin-induced relaxation suggest that these substances could act via an initial release of nucleotides, which in turn could activate P2Y1 and/or P2Y2 purinoceptors of endothelial cells, trigger the synthesis and release of NO and then lead to relaxation.