Dissemin is shutting down on January 1st, 2025

Published in

Springer, Planta, 5(239), p. 989-1001, 2014

DOI: 10.1007/s00425-014-2031-4

Links

Tools

Export citation

Search in Google Scholar

Differential expression of the brassinosteroid receptor-encoding BRI1 gene in Arabidopsis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Brassinosteroid (BR)-regulated growth and development in Arabidopsis depends on BRASSINOSTEROID INSENSITIVE 1 (BRI1), the BR receptor that is responsible for initiating the events of BR signalling. We analysed the temporal and spatial regulation of BRI1 expression using stable transgenic lines that carried BRI1 promoter:reporter fusions. In both seedlings and mature plants the tissues undergoing elongation or differentiation showed elevated BRI1 gene activity, and it could be demonstrated that in the hypocotyl this was accompanied by accumulation of the BRI1 transcript and its receptor protein product. In seedlings the BRI1 promoter was also found to be under diurnal regulation, determined primarily by light repression and a superimposed circadian control. To determine the functional importance of transcriptional regulation we complemented the severely BR insensitive bri1-101 mutant with a BRI1-luciferase fusion construct that was driven by promoters with contrasting specificities. Whereas the BRI1 promoter-driven transgene fully restored the wild phenotype, expression from the photosynthesisassociated CAB3 and the vasculature-specific SUC2 and ATHB8 promoters resulted in plants with varying morphogenic defects. Our results reveal complex differential regulation of BRI1 expression, and suggest that by influencing the distribution and abundance of the receptor this regulation can enhance or attenuate BR signalling.