Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, The Journal of Physical Chemistry A, 21(104), p. 4984-4988, 2000

DOI: 10.1021/jp000575i

Links

Tools

Export citation

Search in Google Scholar

Carbonyl Spectator Bonds as Sensitive Sensors for Charge Transfer Reactions on the Femtosecond Time Scale

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The feasibility of using the vibrational Stark effect for the observation of charge transfer reactions on a short time scale is demonstrated. The photoinduced oxidation of ferrocenophanone induces a fast shift of the carbonyl stretching frequency which is observable by femtosecond time-resolved IR spectroscopy. The observed shift is in good agreement with the IR spectrum of chemically oxidized ferrocenophanone and with theoretical predictions based on vibrational Stark effect calculations. The time dependence of the signal mirrors the charge transfer dynamics on the fs to ps time scale, as observed by optical spectroscopy. This shows that the vibrational Stark effect provides access to observing charge transfer reactions in the IR on the fs time scale. Since the Stark effect is sensitive to changes of the electric field alone, the sensor bond does not need to be part of the molecular system under investigation, but may be a noninvolved “spectator” bond located in its immediate surroundings.