Published in

American Institute of Physics, Applied Physics Letters, 5(105), p. 052104

DOI: 10.1063/1.4891816

Links

Tools

Export citation

Search in Google Scholar

Improved electrical mobility in highly epitaxial La:BaSnO3 films on SmScO3(110) substrates

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Heteroepitaxial growth of BaSnO3 and Ba1−xLaxSnO3 (x = 7%) lanthanum doped barium stannate thin films on different perovskite single crystal (SrTiO3 (001) and SmScO3 (110)) substrates has been achieved by pulsed laser deposition under optimized deposition conditions. X-ray diffraction measurements indicate that the films on either of these substrates are relaxed due to the large mismatch and present a high degree of crystallinity with narrow rocking curves and smooth surface morphology while analytical quantification by proton induced X-ray emission confirms the stoichiometric La transfer from a polyphasic target, producing films with measured La contents above the bulk solubility limit. The films show degenerate semiconducting behavior on both substrates, with the observed room temperature resistivities, Hall mobilities, and carrier concentrations of 4.4 mΩ cm, 10.11 cm2 V−1 s−1, and 1.38 × 1020 cm−3 on SmScO3 and 7.8 mΩ cm, 5.8 cm2 V−1 s−1, and 1.36 × 1020 cm−3 on SrTiO3 ruling out any extrinsic contribution from the substrate. The superior electrical properties observed on the SmScO3 substrate are attributed to reduction in dislocation density from the lower lattice mismatch.