Published in

Wiley, Molecular Nutrition & Food Research, 2(57), p. 347-359, 2012

DOI: 10.1002/mnfr.201200364

Links

Tools

Export citation

Search in Google Scholar

Prebiotic approach alleviates hepatic steatosis: implication of fatty acid oxidative and cholesterol synthesis pathways

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recent data suggest that gut microbiota contributes to the regulation of host lipid metabolism. We report how fermentable dietary fructo-oligosaccharides (FOS) control hepatic steatosis induced by n-3 PUFA depletion, which leads to hepatic alterations similar to those observed in non-alcoholic fatty liver disease patients. Methods and results: C57Bl/6J mice fed an n-3 PUFA-depleted diet for 3 months were supplemented with FOS during the last 10 days of treatment. FOS-treated mice exhibited higher caecal Bifidobacterium spp. and lower Roseburia spp. content. Microarray analysis of hepatic mRNA revealed that FOS supplementation reduced hepatic triglyceride accumulation through a proliferator-activated receptor α-stimulation of fatty acid oxidation and lessened cholesterol accumulation by inhibiting sterol regulatory element binding protein 2-dependent cholesterol synthesis. Cultured precision-cut liver slices confirmed the inhibition of fatty acid oxidation. FOS effects were related to a decreased hepatic micro-RNA33 expression and to an increased colonic glucagon-like peptide 1 production. Conclusions: The changes in gut microbiota composition by n-3 PUFA-depletion and prebiotics modulate hepatic steatosis by changing gene expression in the liver, a phenomenon that could implicate micro-RNA and gut-derived hormones. Our data underline the advantage of targeting the gut microbiota by colonic nutrients in the management of liver disease. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. ; SCOPUS: ar.j ; info:eu-repo/semantics/published